Flux switching alternator - Alternator principles

The rotor must bridge the path between opposing pole pieces, but must never bridge all four simultaneously. It must thus have an even number of poles, but this must not be divisible by four. Practical rotors use six poles. As the rotation of one tooth pitch is sufficient to generate one AC cycle, the output frequency is thus the product of the rotation speed (in revs. per second) and the number of rotor teeth. Early AC systems used the standard frequency of 400 Hz, which limited alternators to two pole rotors and a maximum rotation speed of 24,000 rpm. The use of higher frequencies, from multi-pole rotors, was already recognised as a future means to achieve greater power for the same weight. The Seaslug missile alternator used a speed of 24,000 rpm to produce 1.5 kVA of electricity at 2,400 Hz.

Flux switching alternator - Alternator principles

The generator is required to be rugged and capable of very high speeds, as it is driven at the turbine's speed, without reduction gearing. The rotor must thus be simple in design and there can also be no sliding contacts to sliprings or other brushgear. Although the power requirement for the missile may be a largely DC supply, the AC alternator and its need for a rectifier is still favoured for its mechanical robustness.

Alternator - Diesel electric locomotive alternators

In later diesel electric locomotives and diesel electric multiple units, the prime mover turns an alternator which provides electricity for the traction motors (AC or DC).

Alternator - Brushless alternators

Varying the amount of current through the stationary exciter field coils varies the 3-phase output from the exciter. This output is rectified by a rotating rectifier assembly, mounted on the rotor, and the resultant DC supplies the rotating field of the main alternator and hence alternator output. The result of all this is that a small DC exciter current indirectly controls the output of the main alternator.

Alternator - Cooling methods

Many alternators are cooled by ambient air, forced through the enclosure by an attached fan on the same shaft that drives the alternator. In vehicles such as transit buses, a heavy demand on the electrical system may require a large alternator to be oil-cooled. In marine applications water-cooling is also used. Expensive automobiles may use water-cooled alternators to meet high electrical system demands.

Alternator - Brushless alternators

A brushless alternator is composed of two alternators built end-to-end on one shaft. Until 1966, alternators used brushes with rotating field. With advancement in semiconductor technology, brushless alternators are possible. Smaller brushless alternators may look like one unit but the two parts are readily identifiable on the large versions. The larger of the two sections is the main alternator and the smaller one is the exciter. The exciter has stationary field coils and a rotating armature (power coils). The main alternator uses the opposite configuration with a rotating field and stationary armature. A bridge rectifier, called the rotating rectifier assembly, is mounted on the rotor. Neither brushes nor slip rings are used, which reduces the number of wearing parts. The main alternator has a rotating field as described above and a stationary armature (power generation windings).

Alternator - Marine alternators

Marine alternators used in yachts are similar to automotive alternators, with appropriate adaptations to the salt-water environment. Marine alternators are designed to be explosion proof so that brush sparking will not ignite explosive gas mixtures in an engine room environment. They may be 12 or 24 volt depending on the type of system installed. Larger marine diesels may have two or more alternators to cope with the heavy electrical demand of a modern yacht. On single alternator circuits, the power may be split between the engine starting battery and the domestic or house battery (or batteries) by use of a split-charge diode (battery isolator) or a voltage-sensitive relay.

Alternator - Synchronous speeds

The output frequency of an alternator depends on the number of poles and the rotational speed. The speed corresponding to a particular frequency is called the synchronous speed for that frequency. This table gives some examples:

Alternator - History

The late 1870s saw the introduction of first large scale electrical systems with central generation stations to power Arc lamps, used to light whole streets, factory yards, or the interior of large warehouses. Some, such as Yablochkov arc lamps introduced in 1878, ran better on alternating current, and the development of these early AC generating systems was accompanied by the first use of the word "alternator". Supplying the proper amount of voltage from generating stations in these early systems was left up to the engineer's skill in "riding the load". In 1883 the Ganz Works invented the constant voltage generator that could produce a stated output voltage, regardless of the value of the actual load. The introduction of transformers in the mid-1880s led to the widespread use of alternating current and the use of alternators needed to produce it. After 1891, polyphase alternators were introduced to supply currents of multiple differing phases. Later alternators were designed for various alternating current frequencies between sixteen and about one hundred hertz, for use with arc lighting, incandescent lighting and electric motors. Specialized radio frequency alternators like the Alexanderson alternator were developed as longwave radio transmitters around World War 1 and used in a few high power wireless telegraphy stations before vacuum tube transmitters replaced them.

Alternator - Principle of operation

The rotating magnetic field induces an AC voltage in the stator windings. Since the currents in the stator windings vary in step with the position of the rotor, an alternator is a synchronous generator.

Alternator - Direct-connected direct-current (DC) generator

This method of excitation consists of a smaller direct-current (DC) generator fixed on the same shaft with the alternator. The DC generator generates a small amount of electricity just enough to excite the field coils of the connected alternator to generate electricity. A variation of this system is a type of alternator which uses direct current from the battery for initial excitation upon start-up, after which the alternator becomes self-excited.

Alternator - Diesel electric locomotive alternators

The traction alternator usually incorporates integral silicon diode rectifiers to provide the traction motors with up to 1200 volts DC (DC traction, which is used directly) or the common inverter bus (AC traction, which is first inverted from dc to three-phase ac).

Alternator - By excitation

A device that uses permanent magnets to produce alternating current is called a permanent magnet alternator (PMA). A permanent magnet generator (PMG) may produce either alternating current, or direct current if it has a commutator.


An alternator is an electrical generator that converts mechanical energy to electrical energy in the form of alternating current. For reasons of cost and simplicity, most alternators use a rotating magnetic field with a stationary armature. Occasionally, a linear alternator or a rotating armature with a stationary magnetic field is used. In principle, any AC electrical generator can be called an alternator, but usually the term refers to small rotating machines driven by automotive and other internal combustion engines. An alternator that uses a permanent magnet for its magnetic field is called a magneto. Alternators in power stations driven by steam turbines are called turbo-alternators. Large 50 or 60 Hz three-phase alternators in power plants generate most of the world's electric power, which is distributed by electric power grids.

Alternator - Transformation and rectification

This method depends on residual magnetism retained in the iron core to generate weak magnetic field which would allow a weak voltage to be generated. This voltage is used to excite the field coils for the alternator to generate stronger voltage as part of its build up process. After the initial AC voltage buildup, the field is supplied with rectified voltage from the alternator.

Alexanderson alternator

An Alexanderson alternator is a rotating machine invented by Ernst Alexanderson in 1904 for the generation of high-frequency alternating current for use as a radio transmitter. It was one of the first devices capable of generating the continuous radio waves needed for transmission of amplitude modulation (sound) by radio. It was used from about 1910 in a few "superpower" longwave radiotelegraphy stations to transmit transoceanic message traffic by Morse code to similar stations all over the world.

Goldschmidt alternator - Use

The heyday of the big alternator radio transmitters was around 1918. World War I had brought home to nations the strategic importance of radio communication, as without it they could easily be isolated by enemies cutting their submarine telegraph cables. This precipitated a postwar building boom of large transcontinental alternater radio stations. However these expensive behemoths were obsolete even as they were installed. The invention of the triode vacuum tube in 1906 by Lee De Forest, and the feedback oscillator circuit in 1912 by Edwin Armstrong and Alexander Meissner, made possible smaller and cheaper vacuum tube transmitters which by the end of World War 1 could produce as much radio power as the alternators. By 1921 the Marconi Co. had installed 100 kW vacuum tube transmitters for transatlantic message traffic at its stations at Carnarvon, Wales and Glace Bay, Newfoundland. Due to their huge capitol costs, legacy alternator transmitters remained in use through about 1930. It is not known when the last Goldschmidt machine was retired.

Goldschmidt alternator

The Goldschmidt alternator or reflector alternator, invented in 1908 by German engineer Rudolph Goldschmidt, was a rotating machine which generated radio frequency alternating current and was used as a radio transmitter. Radio alternators like the Goldschmidt were some of the first continuous wave radio transmitters. Like the similar Alexanderson alternator, it was used briefly around World War I in a few high power longwave radio stations to transmit transoceanic radiotelegraphy traffic, until the 1920s when it was made obsolete by vacuum tube transmitters.

Alexanderson alternator - Performance advantages

The Alexanderson alternator produced "purer" continuous waves than the arc converter, whose nonsinusoidal output generated significant harmonics, so the alternator was preferred for long-distance telegraphy.

Alternator (automotive) - Field regulation

The field windings are supplied with power from the battery via the ignition switch and regulator. A parallel circuit supplies the "charge" warning indicator and is earthed via the regulator (which is why the indicator is on when the ignition is on but the engine is not running). Once the engine is running and the alternator is generating power, a diode feeds the field current from the alternator main output equalizing the voltage across the warning indicator which goes off. The wire supplying the field current is often referred to as the "exciter" wire. The drawback of this arrangement is that if the warning lamp burns out or the "exciter" wire is disconnected, no current reaches the field windings and the alternator will not generate power. Some warning indicator circuits are equipped with a resistor in parallel with the lamp that permit excitation current to flow if the warning lamp burns out. The driver should check that the warning indicator is on when the engine is stopped; otherwise, there might not be any indication of a failure of the belt which may also drive the cooling water pump. Some alternators will self-excite when the engine reaches a certain speed.