Loading...
Articles
Orthopedic cast - EDF cast

An EDF (elongation, derotation, flexion) cast is used for the treatment of Infantile Idiopathic scoliosis. This method of treatment for correction was developed by UK scoliosis specialist Min Mehta. Scoliosis is a 3-dimensional problem that needs to be corrected on all 3 planes. The EDF casting method has the ability to elongate the spine through traction, derotate the spine/pelvis, and to improve lordosis and overall body shape and alignment.

Orthopedic cast - Spica cast

In some cases, a hip spica may only extend down one or more legs to above the knee. Such casts, called pantaloon casts, are occasionally seen to immobilize an injured lumbar spine or pelvis, in which case the trunk portion of the cast usually extends to the armpits.

Plaster cast - Cast collections

As well as those locations mentioned above, classical cast collections may be seen at the Museum of Classical Archaeology at the University of Cambridge, at the Ashmolean Museum in Oxford, in the Royal Cast Collection in Copenhagen, and the Bellarmine Museum of Art at Fairfield University. The British Museum also holds classical casts, but these are currently all in storage.

Urinary cast - Eosinophilic cast

This type of cast contains eosinophils. It is seen in Tubulo Interstitial Nephritis and occurs in allergy, commonly to drugs like Methicillin & NSAIDs.

Orthopedic cast - Cast liner

Cast liners are often cotton. Though waterproof lining material is also available.

Orthopedic cast - Spica cast

A cast which includes the trunk of the body and one or more limbs is called a spica cast, just as a cast which includes the "trunk" of the arm and one or more fingers or the thumb is. For example, a shoulder spica includes the trunk of the body and one arm, usually to the wrist or hand. Shoulder spicas are almost never seen today, having been replaced with specialized splints and slings which allow early mobility of the injury so as to avoid joint stiffness after healing.

Cast iron - Grey cast iron

Grey cast iron is characterised by its graphitic microstructure, which causes fractures of the material to have a grey appearance. It is the most commonly used cast iron and the most widely used cast material based on weight. Most cast irons have a chemical composition of 2.5–4.0% carbon, 1–3% silicon, and the remainder iron. Grey cast iron has less tensile strength and shock resistance than steel, but its compressive strength is comparable to low- and medium-carbon steel. These mechanical properties are controlled by the size and shape of the graphite flakes present in the microstructure and can be characterised according to the guidelines given by the ASTM.

Cast iron - Cast-iron bridges

The use of cast iron for structural purposes began in the late 1770s, when Abraham Darby III built the Iron Bridge, although short beams had already been used, such as in the blast furnaces at Coalbrookdale. Other inventions followed, including one patented by Thomas Paine. Cast-iron bridges became commonplace as the Industrial Revolution gathered pace. Thomas Telford adopted the material for his bridge upstream at Buildwas, and then for Longdon-on-Tern Aqueduct, a canal trough aqueduct at Longdon-on-Tern on the Shrewsbury Canal.

Cast iron - Malleable cast iron

Malleable iron starts as a white iron casting that is then heat treated for a day or two at about 950 C and then cooled over a day or two. As a result, the carbon in iron carbide transforms into graphite and ferrite plus carbon (austenite). The slow process allows the surface tension to form the graphite into spheroidal particles rather than flakes. Due to their lower aspect ratio, the spheroids are relatively short and far from one another, and have a lower cross section vis-a-vis a propagating crack or phonon. They also have blunt boundaries, as opposed to flakes, which alleviates the stress concentration problems found in grey cast iron. In general, the properties of malleable cast iron are more like those of mild steel. There is a limit to how large a part can be cast in malleable iron, as it is made from white cast iron.

Cast iron - White cast iron

White cast iron displays white fractured surfaces due to the presence of an iron carbide precipitate called cementite. With a lower silicon content (graphitizing agent) and faster cooling rate, the carbon in white cast iron precipitates out of the melt as the metastable phase cementite, Fe 3 C, rather than graphite. The cementite which precipitates from the melt forms as relatively large particles. As the iron carbide precipitates out, it withdraws carbon from the original melt, moving the mixture toward one that is closer to eutectic, and the remaining phase is the lower iron-carbon austenite (which on cooling might transform to martensite). These eutectic carbides are much too large to provide the benefit of what is called precipitation hardening (as in some steels, where much smaller cementite precipitates might inhibit plastic deformation by impeding the movement of dislocations through the pure iron ferrite matrix). Rather, they increase the bulk hardness of the cast iron simply by virtue of their own very high hardness and their substantial volume fraction, such that the bulk hardness can be approximated by a rule of mixtures. In any case, they offer hardness at the expense of toughness. Since carbide makes up a large fraction of the material, white cast iron could reasonably be classified as a cermet. White iron is too brittle for use in many structural components, but with good hardness and abrasion resistance and relatively low cost, it finds use in such applications as the wear surfaces (impeller and volute) of slurry pumps, shell liners and lifter bars in ball mills and autogenous grinding mills, balls and rings in coal pulverisers, and the teeth of a backhoe's digging bucket (although cast medium-carbon martensitic steel is more common for this application).

Cast iron - Ductile cast iron

Developed in 1948, nodular or ductile cast iron has its graphite in the form of very tiny nodules with the graphite in the form of concentric layers forming the nodules. As a result, the properties of ductile cast iron are that of a spongy steel without the stress concentration effects that flakes of graphite would produce. The carbon percentage present is 3-4% and percentage of silicon is 1.8-2.8%.Tiny amounts of 0.02 to 0.1% magnesium, and only 0.02 to 0.04% cerium added to these alloys slow the growth of graphite precipitates by bonding to the edges of the graphite planes. Along with careful control of other elements and timing, this allows the carbon to separate as spheroidal particles as the material solidifies. The properties are similar to malleable iron, but parts can be cast with larger sections.

Cast iron - Cast-iron bridges

The best way of using cast iron for bridge construction was by using arches, so that all the material is in compression. Cast iron, again like masonry, is very strong in compression. Wrought iron, like most other kinds of iron and indeed like most metals in general, is strong in tension, and also tough – resistant to fracturing. The relationship between wrought iron and cast iron, for structural purposes, may be thought of as analogous to the relationship between wood and stone.

Cast iron - White cast iron

It is difficult to cool thick castings fast enough to solidify the melt as white cast iron all the way through. However, rapid cooling can be used to solidify a shell of white cast iron, after which the remainder cools more slowly to form a core of grey cast iron. The resulting casting, called a chilled casting, has the benefits of a hard surface with a somewhat tougher interior.

Cast bullet - Cast bullet advantages

These basic advantages remain true today. Moulds can be obtained to uniformly cast bullets of a diameter producing optimum accuracy in a specific firearm, and a firearm owner possessing such a mould can obtain a supply of those bullets independent of unreliable manufacturers and distributors. Bullets cast over a fireplace or stove from readily obtainable scrap materials still offer excellent performance in subsonic revolver cartridges, and more sophisticated casting techniques can produce bullets suitable for loading at velocities up to about 2000 ft/s. Recent advances in Cast Bullet Lubes have enabled shooters to be able to push cast bullets past 2800 ft/s in slow twist 30 cal rifles.

Cast iron - Cast-iron bridges

Nevertheless, cast iron continued to be used in inappropriate structural ways, until the Tay Rail Bridge disaster of 1879 cast serious doubt on the use of the material. Crucial lugs for holding tie bars and struts in the Tay Bridge had been cast integral with the columns, and they failed in the early stages of the accident. In addition, the bolt holes were also cast and not drilled. Thus, because of casting's draft angle, the tension from the tie bars was placed on the hole's edge rather than being spread over the length of the hole. The replacement bridge was built in wrought iron and steel.

Cast of ER - Main cast

The original starring cast consisted of Anthony Edwards as Dr. Mark Greene, George Clooney as Dr. Douglas "Doug" Ross, Sherry Stringfield as Dr. Susan Lewis, Noah Wyle as medical student (later Dr.) John Carter, and Eriq La Salle as Dr. Peter Benton. Julianna Margulies guest starred in the pilot as Nurse Carol Hathaway before becoming part of the regular cast.

Cast iron pipe - Centrifugally cast

Historically, two different types of molds have been used in centrifugal casting of cast iron pipe: metal molds and sand molds. With metal molds, molten iron was introduced into the mold to uniformly distribute metal over the interior of the mold surface by the centrifugal force generated. The outside mold was typically protected from damage by a controlled water bath or water spray system. When the pipe was cool enough to be handled and hold its shape, the mold was stopped and the pipe removed. Pipe formed in metal molds were typically annealed after casting to eliminate any stresses in the pipe, and were then cleaned, inspected, tested, gauged (for dimensions), coated internally and/or externally, and stored for use. Standards for cast-iron pipe centrifugally cast in metal molds for water were established and published by the American Water Works Association.

Cast iron pipe - Centrifugally cast

When casted with sand molds, two types of manufacturing processes were used. In the first method, a metal pattern was typically positioned in a metal flask and molding sand was rammed into the annular space between the flask and pattern. The pattern was then removed for casting of the pipe using molten grey iron. The second method did not entail a metal pattern, but entailed the forming of the mold centrifugally by lining the heated flask with a measured amount of thermosetting resin and sand. Either way, the casting machine was stopped after the pipe had solidified and the flask was removed. Cast iron pipe formed using this procedure was typically oven-cooled under controlled time and temperature conditions. As with metal molds, pipe was typically annealed to eliminate any stresses in the pipe, and were then cleaned, inspected, tested, gauged (for dimensions), coated internally and/or externally, and stored for use. Standards for cast-iron pipe centrifugally cast in sand molds for water were established and published by the American Water Works Association.

Cast of ER - Main cast

George Clooney's departure towards the end of Season 5 started a major cycle of main cast changes over the next few years. Season 6 opened with the addition of Paul McCrane as Dr. Robert "Rocket" Romano (recurring character in both Seasons 4 and 5), Croatian actor Goran Visnjic as Dr. Luka Kovač, and Michael Michele as Dr. Cleo Finch. A bit later in the season Erik Palladino joined as Dr. Dave Malucci, and Ming-Na returned to the series as Dr. Jing-Mei "Deb" Chen, reprising a recurring character she portrayed in Season 1. Soon after, Maura Tierney was added as Nurse (later Dr.) Abigail "Abby" Lockhart. Season 8 saw the arrival of Sharif Atkins as medical student (later Dr.) Michael Gallant, as well as the return of Dr. Susan Lewis when Sherry Stringfield reprised her role after having left the series in Season 3.

Cast of ER - Main cast

Mekhi Phifer joined the cast in Season 9 as Dr. Gregory "Greg" Pratt (recurring character at the end of Season 8). Season 10 saw the addition of Parminder Nagra as medical student (later Dr.) Neela Rasgotra and Linda Cardellini as Samantha "Sam" Taggart. Shane West joined the cast in Season 11 as Ray Barnett and Scott Grimes became part of the main cast in Season 12 as Dr. Archie Morris (recurring character in Seasons 10 and 11). Season 13 saw the addition of John Stamos as Dr. Tony Gates, reprising a role he had originated in Season 12 when he portrayed Gates the paramedic/medical student. Season 15 saw the final additions to the main cast, with David Lyons signing on as Dr. Simon Brenner (recurring character towards the end of Season 14) and Angela Bassett as Dr. Catherine "Cate" Banfield.

Loading...