Terrestrial high-definition television - Countries without terrestrial high-definition television

Some countries such as Germany, The Netherlands and Belgium may only broadcasts their channels in standard definition via the terrestrial airwaves. This is largely because the uptake of cable television may be higher than that of terrestrial television, thus giving broadcasters very little incentive to provide their high-definition services via the terrestrial airwaves.

Terrestrial high-definition television - Countries that have terrestrial high-definition television

[[File:Terrestrial_HD_World_Map.svg|thumb|right|350px|World map of countries that have terrestrial high-definition television.

High-resolution high-definition

HRHD (high-resolution high-definition) (also HR, HRHDTV, or HR.HDTV) is an initialism referring to an image resolution derived from high-definition video, often seen as part of the filename of TV shows shared on the Internet. HRHD is an unofficial standard of encoding video, meaning that the video signal was ripped directly from a HDTV broadcast, then downsampled to approximately 960 × 540, and usually encoded with Xvid. While the horizontal resolution of 960 remains constant the vertical resolution can fluctuate up to 5% to provide clean cropping. It is sometimes erroneously referred to as Half-Resolution High-Definition.

High-definition video - 3gp 144p movie

High-definition image sources include terrestrial broadcast, direct broadcast satellite, digital cable, high definition disc (BD), digital cameras, Internet downloads, and video game consoles.

High-definition video - Analog

Modern HD specifications date to the early 1980s, when Japanese engineers developed the HighVision 1,125-line interlaced TV standard (also called MUSE) that ran at 60 frames per second. The Sony HDVS system was presented at an international meeting of television engineers in Algiers, April 1981 and Japan's NHK presented its analog high-definition television (HDTV) system at a Swiss conference in 1983.

High-definition video - Digital

In the early 2000s, it looked as if DVB would be the video standard far into the future. However, both Brazil and China have adopted alternative standards for high-definition video that preclude the interoperability that was hoped for after decades of largely non-interoperable analog TV broadcasting.

High-definition video - Digital

High-definition digital video was not possible with uncompressed video due to impractically high memory and bandwidth requirements, with a bit-rate exceeding 1Gbps for full HD video. Digital HDTV was enabled by the development of discrete cosine transform (DCT) video compression. The DCT is a lossy compression technique that was first proposed by Nasir Ahmed in 1972, and was later adapted into a motion-compensated DCT algorithm for video coding standards such as the H.26x formats from 1988 onwards and the MPEG formats from 1993 onwards. Motion-compensated DCT compression significantly reduced the amount of memory and bandwidth required for digital video, capable of achieving a data compression ratio of around 100:1 compared to uncompressed video. By the early 1990s, DCT video compression had been widely adopted as the video coding standard for HDTV.

High-definition television - Rise of digital compression

High-definition digital television was not possible with uncompressed video, which requires a bandwidth exceeding 1Gbps for studio-quality HD digital video. Digital HDTV was made possible by the development of discrete cosine transform (DCT) video compression. DCT coding is a lossy image compression technique that was first proposed by Nasir Ahmed in 1972, and was later adapted into a motion-compensated DCT algorithm for video coding standards such as the H.26x formats from 1988 onwards and the MPEG formats from 1993 onwards. Motion-compensated DCT compression significantly reduces the amount of bandwidth required for a digital TV signal. By 1991, it had achieved data compression ratios from 8:1 to 14:1 for near-studio-quality HDTV transmission, down to 70–140 Mbps bit-rate. Between 1988 and 1991, DCT video compression was widely adopted as the video coding standard for HDTV implementations, enabling the development of practical digital HDTV. Dynamic random-access memory (DRAM) was also adopted as frame-buffer semiconductor memory, with the DRAM semiconductor industry's increased manufacturing and reducing prices important to the commercialization of HDTV.

High-definition metrology

High-definition measurements are therefore contrasted with "global" or "overall" or "statistical" measurements which provide some single or coarsely sampled measurement values that do not define the surface or object attribute variations in detail. Whereas the latter measurements may provide an indication of some overall characteristic of the item being measured, high-definition metrology is used where it is desired to also know more precisely at what location certain attributes occur, or where their values are outside of some specified range of values. In precision manufacturing, for example, this knowledge may enable remedial action to be taken to correct or control process variables that affect the dimensions of a manufactured part or assembly.

High-definition video - Types of recorded media

720p is used more for Internet distribution of high-definition video, because computer monitors progressively scan; 720p video has lower storage-decoding requirements than either the 1080i or the 1080p. This is also the medium for high-definition broadcasts around the world and 1080p is used for Blu-ray movies.

High-definition television - Recording and compression

HDTV can be recorded to D-VHS (Digital-VHS or Data-VHS), W-VHS (analog only), to an HDTV-capable digital video recorder (for example DirecTV's high-definition digital video recorder, Sky HD's set-top box, Dish Network's VIP 622 or VIP 722 high-definition digital video recorder receivers (these Set Top Boxes (STB) allow for HD on the Primary TV and SD on the secondary TV (TV2) without a secondary box on TV2), or TiVo's Series 3 or HD recorders), or an HDTV-ready HTPC. Some cable boxes are capable of receiving or recording two or more broadcasts at a time in HDTV format, and HDTV programming, some included in the monthly cable service subscription price, some for an additional fee, can be played back with the cable company's on-demand feature.

High-definition video - Technical details

A frame or field rate can also be specified without a resolution. For example, 24p means 24 progressive scan frames per second and 50i means 25 progressive frames per second, consisting of 50 interlaced fields per second. Most HDTV systems support some standard resolutions and frame or field rates. The most common are noted below. High-definition signals require a high-definition television or computer monitor in order to be viewed. High-definition video has an aspect ratio of 16:9 (1.78:1). The aspect ratio of regular widescreen film shot today is typically 1.85:1 or 2.39:1 (sometimes traditionally quoted at 2.35:1). Standard-definition television (SDTV) has a 4:3 (1.33:1) aspect ratio, although in recent years many broadcasters have transmitted programs "squeezed" horizontally in 16:9 anamorphic format, in hopes that the viewer has a 16:9 set which stretches the image out to normal-looking proportions, or a set which "squishes" the image vertically to present a "letterbox" view of the image, again with correct proportions.

High-definition metrology

In metrology, high-definition metrology is where measurements are made densely across the observable extent of that surface or object and displayed with high-definition. In that sense, high-definition is analogous to high definition television.

High-definition television - History

The British high-definition TV service started trials in August 1936 and a regular service on 2 November 1936 using both the (mechanical) Baird 240 line sequential scan (later to be inaccurately rechristened 'progressive') and the (electronic) Marconi-EMI 405 line interlaced systems. The Baird system was discontinued in February 1937. In 1938 France followed with their own 441-line system, variants of which were also used by a number of other countries. The US NTSC 555-line system joined in 1941. In 1949 France introduced an even higher-resolution standard at 819 lines, a system that should have been high definition even by today's standards, but was monochrome only and the technical limitations of the time prevented it from achieving the definition of which it should have been capable. All of these systems used interlacing and a 4:3 aspect ratio except the 240-line system which was progressive (actually described at the time by the technically correct term "sequential") and the 405-line system which started as 5:4 and later changed to 4:3. The 405-line system adopted the (at that time) revolutionary idea of interlaced scanning to overcome the flicker problem of the 240-line with its 25 Hz frame rate. The 240-line system could have doubled its frame rate but this would have meant that the transmitted signal would have doubled in bandwidth, an unacceptable option as the video baseband bandwidth was required to be not more than 3 MHz.

High-definition television - Japan

Satellite test broadcasts started June 4, 1989, the first daily high-definition programs in the world, with regular testing starting on November 25, 1991 or "Hi-Vision Day" – dated exactly to refer to its 1,125-lines resolution. Regular broadcasting of BS-9ch commenced on November 25, 1994, which featured commercial and NHK programming.

High-definition television - Types of media

High-definition image sources include terrestrial broadcast, direct broadcast satellite, digital cable, IPTV, Blu-ray video disc (BD), and internet downloads.

High-definition video - Digital

The current high-definition video standards in North America were developed during the course of the advanced television process initiated by the Federal Communications Commission in 1987 at the request of American broadcasters. In essence, the end of the 1980s was a death knell for most analog high definition technologies that had developed up to that time.

High-definition television - Types of media

Non-cinematic HDTV video recordings intended for broadcast are typically recorded either in 720p or 1080i format as determined by the broadcaster. 720p is commonly used for Internet distribution of high-definition video, because most computer monitors operate in progressive-scan mode. 720p also imposes less strenuous storage and decoding requirements compared to both 1080i and 1080p. 1080p/24, 1080i/30, 1080i/25, and 720p/30 is most often used on Blu-ray Disc.

High-definition video

High-definition video (HD video) is video of higher resolution and quality than standard-definition. While there is no standardized meaning for high-definition, generally any video image with considerably more than 480 vertical lines (North America) or 576 vertical lines (Europe) is considered high-definition. Four hundred and eighty scan lines is generally the minimum even though the majority of systems greatly exceed that. Images of standard resolution captured at rates faster than normal (60 frames/second North America, 50 fps Europe), by a high-speed camera may be considered high-definition in some contexts. Some television series shot on high-definition video are made to look as if they have been shot on film, a technique which is often known as filmizing.

High-definition television - Japan

In 1979, the Japanese public broadcaster NHK first developed consumer high-definition television with a 5:3 display aspect ratio. The system, known as Hi-Vision or MUSE after its multiple sub-Nyquist sampling encoding (MUSE) for encoding the signal, required about twice the bandwidth of the existing NTSC system but provided about four times the resolution (1035i/1125 lines). In 1981, the MUSE system was demonstrated for the first time in the United States, using the same 5:3 aspect ratio as the Japanese system. Upon visiting a demonstration of MUSE in Washington, US President Ronald Reagan was impressed and officially declared it "a matter of national interest" to introduce HDTV to the US. NHK taped the 1984 Summer Olympics with a Hi-Vision camera, weighing 40 kg.