Loading...
Articles
Radio receiver - Coherer receiver

The first radio receivers invented by Marconi, Oliver Lodge and Alexander Popov in 1894-5 used a primitive radio wave detector called a coherer, invented in 1890 by Edouard Branly and improved by Lodge and Marconi. The coherer was a glass tube with metal electrodes at each end, with loose metal powder between the electrodes. It initially had a high resistance. When a radio frequency voltage was applied to the electrodes, its resistance dropped and it conducted electricity. In the receiver the coherer was connected directly between the antenna and ground. In addition to the antenna, the coherer was connected in a DC circuit with a battery and relay. When the incoming radio wave reduced the resistance of the coherer, the current from the battery flowed through it, turning on the relay to ring a bell or make a mark on a paper tape in a siphon recorder. In order to restore the coherer to its previous nonconducting state to receive the next pulse of radio waves, it had to be tapped mechanically to disturb the metal particles. This was done by a "decoherer", a clapper which struck the tube, operated by an electromagnet powered by the relay.

FTA receiver - Receiver obsolescence

There have also been incidents where existing receiver designs have been "cloned" or copied by competing manufacturers; a manufacturer will often reduce support for a widely copied receiver design. In some cases, malware has been released, ostensibly in the same format as existing third-party firmware, in an attempt to interfere with the further use of a widely cloned receiver's design.

Radio receiver - Reflex receiver

The reflex receiver, invented in 1914 by Wilhelm Schloemilch and Otto von Bronk, and rediscovered and extended to multiple tubes in 1917 by Marius Latour and William H. Priess, was a design used in some inexpensive radios of the 1920s which enjoyed a resurgence in small portable tube radios of the 1930s and again in a few of the first transistor radios in the 1950s. It is another example of an ingenious circuit invented to get the most out of a limited number of active devices. In the reflex receiver the RF signal from the tuned circuit is passed through one or more amplifying tubes or transistors, demodulated in a detector, then the resulting audio signal is passed again though the same amplifier stages for audio amplification. The separate radio and audio signals present simultaneously in the amplifier do not interfere with each other since they are at different frequencies, allowing the amplifying tubes to do "double duty". In addition to single tube reflex receivers, some TRF and superheterodyne receivers had several stages "reflexed". Reflex radios were prone to a defect called "play-through" which meant that the volume of audio did not go to zero when the volume control was turned down.

Radio receiver - Superregenerative receiver

In the regenerative receiver the loop gain of the feedback loop was less than one, so the tube (or other amplifying device) did not oscillate but was close to oscillation, giving large gain. In the superregenerative receiver, the loop gain was made equal to one, so the amplifying device actually began to oscillate, but the oscillations were interrupted periodically. This allowed a single tube to produce gains of over 10 6.

Universal asynchronous receiver-transmitter - Receiver

It is a standard feature for a UART to store the most recent character while receiving the next. This "double buffering" gives a receiving computer an entire character transmission time to fetch a received character. Many UARTs have a small first-in, first-out (FIFO) buffer memory between the receiver shift register and the host system interface. This allows the host processor even more time to handle an interrupt from the UART and prevents loss of received data at high rates.

Universal asynchronous receiver-transmitter - Receiver

All operations of the UART hardware are controlled by an internal clock signal which runs at a multiple of the data rate, typically 8 or 16 times the bit rate. The receiver tests the state of the incoming signal on each clock pulse, looking for the beginning of the start bit. If the apparent start bit lasts at least one-half of the bit time, it is valid and signals the start of a new character. If not, it is considered a spurious pulse and is ignored. After waiting a further bit time, the state of the line is again sampled and the resulting level clocked into a shift register. After the required number of bit periods for the character length (5 to 8 bits, typically) have elapsed, the contents of the shift register are made available (in parallel fashion) to the receiving system. The UART will set a flag indicating new data is available, and may also generate a processor interrupt to request that the host processor transfers the received data.

Radio receiver - Superheterodyne receiver

By the 1940s the superheterodyne AM broadcast receiver was refined into a cheap-to-manufacture design called the "All American Five", because it only used five vacuum tubes: usually a converter (mixer/local oscillator), an IF amplifier, a detector/audio amplifier, audio power amplifier, and a rectifier. This design was used for virtually all commercial radio receivers until the transistor replaced the vacuum tube in the 1970s.

FTA receiver - Receiver obsolescence

Many receivers will provide options for hardware expansion (such as to add 8PSK reception or DVB Common Interface TV subscription cards) and firmware upgrade (either officially or from nominally third-party sources). Most often, once the individual receiver model is discontinued, this support and expandability rapidly disappears from all sources. The migration of existing feeds to formats such as MPEG-4, HDTV, or DVB-S2 (which many current receivers do not support) may also result in viewers losing existing free programming as equipment becomes rapidly obsolete. Unlike digital terrestrial set-top boxes, most standard-definition DVB-S receivers do not down-convert HD programming and thus produce no usable video for these signals.

Radio receiver - Superheterodyne receiver

The superheterodyne, invented in 1918 during World War I by Edwin Armstrong when he was in the Signal Corps, is the design used in almost all modern receivers, except a few specialized applications. It is a more complicated design than the other receivers above, and when it was invented required 6 - 9 vacuum tubes, putting it beyond the budget of most consumers, so it was initially used mainly in commercial and military communication stations. However, by the 1930s the "superhet" had replaced all the other receiver types above.

Dolinar receiver - Kennedy Receiver

The Kennedy receiver is a device that can distinguish between binary coherent states. It operates on a basic level by first displacing the incoming state by \alpha and the resulting state is sent to a single-photon detector (SPD), such as a photomultiplier tube or an avalanche photodiode. If the incoming state was, then the resultant state is,

Radio receiver - Superregenerative receiver

This was a receiver invented by Edwin Armstrong in 1922 which used regeneration in a more sophisticated way, to give greater gain. It was used in a few shortwave receivers in the 1930s, and is used today in a few cheap high frequency applications such as walkie-talkies and garage door openers.

Radio receiver - Neutrodyne receiver

The Neutrodyne receiver, invented in 1922 by Louis Hazeltine, was a TRF receiver with a "neutralizing" circuit added to each radio amplification stage to cancel the feedback to prevent the oscillations which caused the annoying whistles in the TRF. In the neutralizing circuit a capacitor fed a feedback current from the plate circuit to the grid circuit which was 180° out of phase with the feedback which caused the oscillation, canceling it. The Neutrodyne was popular until the advent of cheap tetrode tubes around 1930.

Radio receiver - TRF receiver

Today the TRF design is used in a few integrated (IC) receiver chips. From the standpoint of modern receivers the disadvantage of the TRF is that the gain and bandwidth of the tuned RF stages are not constant but vary as the receiver is tuned to different frequencies. Since the bandwidth of a filter with a given Q is proportional to the frequency, as the receiver is tuned to higher frequencies its bandwidth increases.

Radio receiver - Crystal radio receiver

Although it was invented in 1904 in the wireless telegraphy era, the crystal radio receiver could also rectify AM transmissions and served as a bridge to the broadcast era. In addition to being the main type used in commercial stations during the wireless telegraphy era, it was the first receiver to be used widely by the public. During the first two decades of the 20th century, as radio stations began to transmit in AM voice (radiotelephony) instead of radiotelegraphy, radio listening became a popular hobby, and the crystal was the simplest, cheapest detector. The millions of people who purchased or homemade these inexpensive reliable receivers created the mass listening audience for the first radio broadcasts, which began around 1920. By the late 1920s the crystal receiver was superseded by vacuum tube receivers and became commercially obsolete. However it continued to be used by youth and the poor until World War 2. Today these simple radio receivers are constructed by students as educational science projects.

Radio receiver - Regenerative (autodyne) receiver

The regenerative receiver, invented by Edwin Armstrong in 1913 when he was a 23-year-old college student, was used very widely until the late 1920s particularly by hobbyists who could only afford a single-tube radio. Today transistor versions of the circuit are still used in a few inexpensive applications like walkie-talkies. In the regenerative receiver the gain (amplification) of a vacuum tube or transistor is increased by using regeneration (positive feedback); some of the energy from the tube's output circuit is fed back into the input circuit with a feedback loop. The early vacuum tubes had very low gain (around 5). Regeneration could not only increase the gain of the tube enormously, by a factor of 15,000 or more, it also increased the Q factor of the tuned circuit, decreasing (sharpening) the bandwidth of the receiver by the same factor, improving selectivity greatly. The receiver had a control to adjust the feedback. The tube also acted as a grid-leak detector to rectify the AM signal.

Radio receiver - Regenerative (autodyne) receiver

Another advantage of the circuit was that the tube could be made to oscillate, and thus a single tube could serve as both a beat frequency oscillator and a detector, functioning as a heterodyne receiver to make CW radiotelegraphy transmissions audible. This mode was called an autodyne receiver. To receive radiotelegraphy, the feedback was increased until the tube oscillated, then the oscillation frequency was tuned to one side of the transmitted signal. The incoming radio carrier signal and local oscillation signal mixed in the tube and produced an audible heterodyne (beat) tone at the difference between the frequencies.

Radio receiver - Heterodyne receiver and BFO

The receiver was ahead of its time, because when it was invented there was no oscillator capable of producing the radio frequency sine wave f O with the required stability. Fessenden first used his large radio frequency alternator, but this wasn't practical for ordinary receivers. The heterodyne receiver remained a laboratory curiosity until a cheap compact source of continuous waves appeared, the vacuum tube electronic oscillator invented by Edwin Armstrong and Alexander Meissner in 1913. After this it became the standard method of receiving CW radiotelegraphy. The heterodyne oscillator is the ancestor of the beat frequency oscillator (BFO) which is used to receive radiotelegraphy in communications receivers today. The heterodyne oscillator had to be retuned each time the receiver was tuned to a new station, but in modern superheterodyne receivers the BFO signal beats with the fixed intermediate frequency, so the beat frequency oscillator can be a fixed frequency.

Radio receiver - Heterodyne receiver and BFO

Armstrong later used Fessenden's heterodyne principle in his superheterodyne receiver (below).

Radio receiver - Heterodyne receiver and BFO

The continuous wave radiotelegraphy signals produced by these transmitters required a different method of reception. The radiotelegraphy signals produced by spark gap transmitters consisted of strings of damped waves repeating at an audio rate, so the "dots" and "dashes" of Morse code were audible as a tone or buzz in the receivers' earphones. However the new continuous wave radiotelegraph signals simply consisted of pulses of unmodulated carrier (sine waves). These were inaudible in the receiver headphones. To receive this new modulation type, the receiver had to produce some kind of tone during the pulses of carrier.

Radio receiver - Heterodyne receiver and BFO

In 1901 Reginald Fessenden had invented a better means of accomplishing this. In his heterodyne receiver an unmodulated sine wave radio signal at a frequency f O offset from the incoming radio wave carrier f C was applied to a rectifying detector such as a crystal detector or electrolytic detector, along with the radio signal from the antenna. In the detector the two signals mixed, creating two new heterodyne (beat) frequencies at the sum f C + f O and the difference f C − f O between these frequencies. By choosing f O correctly the lower heterodyne f C − f O was in the audio frequency range, so it was audible as a tone in the earphone whenever the carrier was present. Thus the "dots" and "dashes" of Morse code were audible as musical "beeps". A major attraction of this method during this pre-amplification period was that the heterodyne receiver actually amplified the signal somewhat, the detector had "mixer gain".

Loading...