Loading...
Articles
Relay - Polarized relay

A polarized relay places the armature between the poles of a permanent magnet to increase sensitivity. Polarized relays were used in middle 20th Century telephone exchanges to detect faint pulses and correct telegraphic distortion.

Relay - Mercury relay

A mercury relay is a relay that uses mercury as the switching element. They are used where contact erosion would be a problem for conventional relay contacts. Owing to environmental considerations about significant amount of mercury used and modern alternatives, they are now comparatively uncommon.

Relay - Coaxial relay

Where radio transmitters and receivers share one antenna, often a coaxial relay is used as a TR (transmit-receive) relay, which switches the antenna from the receiver to the transmitter. This protects the receiver from the high power of the transmitter. Such relays are often used in transceivers which combine transmitter and receiver in one unit. The relay contacts are designed not to reflect any radio frequency power back toward the source, and to provide very high isolation between receiver and transmitter terminals. The characteristic impedance of the relay is matched to the transmission line impedance of the system, for example, 50 ohms.

Relay - Latching relay

Some early computers used ordinary relays as a kind of latch—they store bits in ordinary wire spring relays or reed relays by feeding an output wire back as an input, resulting in a feedback loop or sequential circuit. Such an electrically latching relay requires continuous power to maintain state, unlike magnetically latching relays or mechanically racheting relays.

Relay - Latching relay

A latching relay, also called impulse, bistable, keep, or stay relay, or simply latch, maintains either contact position indefinitely without power applied to the coil. The advantage is that one coil consumes power only for an instant while the relay is being switched, and the relay contacts retain this setting across a power outage. A latching relay allows remote control of building lighting without the hum that may be produced from a continuously (AC) energized coil.

Relay - Reed relay

A reed relay is a reed switch enclosed in a solenoid. The switch has a set of contacts inside an evacuated or inert gas-filled glass tube that protects the contacts against atmospheric corrosion; the contacts are made of magnetic material that makes them move under the influence of the field of the enclosing solenoid or an external magnet.

Relay - Latching relay

A stepping relay is a specialized kind of multi-way latching relay designed for early automatic telephone exchanges.

Relay - Latching relay

In another type, a ratchet relay has a ratchet mechanism that holds the contacts closed after the coil is momentarily energized. A second impulse, in the same or a separate coil, releases the contacts. This type may be found in certain cars, for headlamp dipping and other functions where alternating operation on each switch actuation is needed.

Relay - Static relay

A static relay consists of electronic circuitry to emulate all those characteristics which are achieved by moving parts in an electro-magnetic relay.

Relay - Latching relay

In one mechanism, two opposing coils with an over-center spring or permanent magnet hold the contacts in position after the coil is de-energized. A pulse to one coil turns the relay on and a pulse to the opposite coil turns the relay off. This type is widely used where control is from simple switches or single-ended outputs of a control system, and such relays are found in avionics and numerous industrial applications.

Relay - Latching relay

Very early computers often stored bits in a magnetically latching relay, such as ferreed or the later remreed in the 1ESS switch.

Relay - Latching relay

Another latching type has a remanent core that retains the contacts in the operated position by the remanent magnetism in the core. This type requires a current pulse of opposite polarity to release the contacts. A variation uses a permanent magnet that produces part of the force required to close the contact; the coil supplies sufficient force to move the contact open or closed by aiding or opposing the field of the permanent magnet. A polarity controlled relay needs changeover switches or an H bridge drive circuit to control it. The relay may be less expensive than other types, but this is partly offset by the increased costs in the external circuit.

Relay - Overload protection relay

Electric motors need overcurrent protection to prevent damage from over-loading the motor, or to protect against short circuits in connecting cables or internal faults in the motor windings. The overload sensing devices are a form of heat operated relay where a coil heats a bimetallic strip, or where a solder pot melts, to operate auxiliary contacts. These auxiliary contacts are in series with the motor's contactor coil, so they turn off the motor when it overheats.

Relay - Mercury-wetted relay

A mercury-wetted reed relay is a form of reed relay that employs a mercury switch, in which the contacts are wetted with mercury. Such relays are used to switch low-voltage signals (one volt or less). Mercury reduces the contact resistance and mitigates the associated voltage drop. Surface contamination may result in poor conductivity for low-current signals. For high-speed applications, the mercury eliminates contact bounce, and provides virtually instantaneous circuit closure. Mercury wetted relays are position-sensitive and must be mounted according to the manufacturer's specifications. Because of the toxicity and expense of liquid mercury, these relays have increasingly fallen into disuse.

Relay - Mercury-wetted relay

The high speed of switching action of the mercury-wetted relay is a notable advantage. The mercury globules on each contact coalesce, and the current rise time through the contacts is generally considered to be a few picoseconds. However, in a practical circuit it may be limited by the inductance of the contacts and wiring. It was quite common, before restrictions on the use of mercury, to use a mercury-wetted relay in the laboratory as a convenient means of generating fast rise time pulses, however although the rise time may be picoseconds, the exact timing of the event is, like all other types of relay, subject to considerable jitter, possibly milliseconds, due to mechanical imperfections.

Relay - Machine tool relay

A relay allows circuits to be switched by electrical equipment: for example, a timer circuit with a relay could switch power at a preset time. For many years relays were the standard method of controlling industrial electronic systems. A number of relays could be used together to carry out complex functions (relay logic). The principle of relay logic is based on relays which energize and de-energize associated contacts. Relay logic is the predecessor of ladder logic, which is commonly used in programmable logic controllers.

Relay - Overload protection relay

This thermal protection operates relatively slowly allowing the motor to draw higher starting currents before the protection relay will trip. Where the overload relay is exposed to the same ambient temperature as the motor, a useful though crude compensation for motor ambient temperature is provided.

Relay - Time delay relay

First we have the normally open, timed-closed (NOTC) contact. This type of contact is normally open when the coil is unpowered (de-energized). The contact is closed by the application of power to the relay coil, but only after the coil has been continuously powered for the specified amount of time. In other words, the direction of the contact's motion (either to close or to open) is identical to a regular NO contact, but there is a delay in closing direction. Because the delay occurs in the direction of coil energization, this type of contact is alternatively known as a normally open, on-delay.

Relay - Time delay relay

Some relays are constructed with a kind of "shock absorber" mechanism attached to the armature which prevents immediate, full motion when the coil is either energized or de-energized. This addition gives the relay the property of time-delay actuation. Time-delay relays can be constructed to delay armature motion on coil energization, de-energization, or both.

Relay program - Relay 2

COSPAR satellite ID: Relay 2 1964-003A

Loading...